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Calibrating MiniBooNE

Muon Tracker Calibration System:

Laser calibration system

A set of laser-fed flasks

source of energy calibration. The entry position of a

filled with Ludox are distributeddesthe MiniBooNE

The muon calibration system employs cosmic ray tank. The purpose of this system is to study the PMT time respodstha

WM% muons that stop in scintillating cubes located inside the optical properties of the oil, the latter being one of the nmgbrtant sources of
= detector to provide the experiment with an independent systematic error in the experiment.

cosmic muon is determined by a series of scintillating The plots show the time distributions of the PMT hits in laser events fréaska f

W - strips located at the “north pole” of MiniBooNE. The  located at the center of the tank. MiniBooNE has a set of old PMT’s inherited
: schematic on the left shows how the muon tracker strip from LSND, and a set of new PMT’s. They have a different time structure |
system is used for this purpose. laser events as seen in the plots.
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through them determine the entry position of th@emu path length from its entry point to a scintillagin of the PMT's is cléar The long tail is due to ligitattering in the ol
in the tank by geometry. cube. Shown is data for 6 scintillating cubes. ' '
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MiniIBooNE Physics Analyses:

Charged Current Quasi-Elastic scattering: Neutral Current T° events

(Analysis by Jocelyn Monroe and Michel Sorel, CobiaUniversity) (Analysis by Jennifer Raaf, University of Colorado)

Neutral Current Elastic scattering:
(Analysis by Chris Cox, Indiana University)
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